Skip to main content
Log in

Artificial neural network data analysis for classification of soils based on their radionuclide content

  • Other Problems of Physical Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The artificial neural network (ANN) data analysis method was used to recognize and classify soils of an unknown geographic origin. A total of 103 soil samples were differentiated into classes according to the regions in Serbia and Montenegro from which they were collected. Their radionuclide (226Ra, 238U, 235U, 40K, 134Cs, 137Cs, 232Th, and 7Be) activities detected by gamma-ray spectrometry were then used as inputs to ANN. Five different training algorithms with different numbers of samples in training sets were tested and compared in order to find the one with the minimum root mean square error (RMSE). The best predictive power for the classification of soils from the fifteen regions was achieved using a network with seven hidden layer nodes and 2500 training epochs using the online back-propagation randomized training algorithm. With the optimized ANN, most soil samples not included in the ANN training data set were correctly classified at an average rate of 92%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Eswaran, T. Rice, R. Shrens, and B. A. Stewart, Soil Classification: A Global Desk Reference (CRC, Boca Raton, 2002).

    Google Scholar 

  2. A. X. Zhu, Water Resour. Res. 36, 663 (2000).

    Article  Google Scholar 

  3. P. H. Fidêncio, I. Ruisãnchez, and R. J. Poppi, Analyst 126, 2194 (2001).

    Article  Google Scholar 

  4. Z. Ramadan, X. H. Song, P. K. Hopke, et al., Anal. Chim. Acta 446, 233 (2001).

    Article  CAS  Google Scholar 

  5. O. Antonić, N. Pernar, and S. D. Jelaska, Ecol. Model. 170, 363 (2003).

    Article  Google Scholar 

  6. A. C. McBratney, M. L. Mendonca Santos, and B. Minasny, Geoderma 117, 3 (2003).

    Article  Google Scholar 

  7. L. Slavković, B. Škrbić, N. Miljević, and A. Onjia, Environ. Chem. Lett. 2, 105 (2004).

    Article  Google Scholar 

  8. C. M. Bishop, Neural Networks for Pattern Recognition (Oxford Univ. Press, Oxford, U.K., 1995).

    Google Scholar 

  9. J. Kim, A. Mowat, P. Poole, and N. Kasabov, Chemom. Intell. Lab. Syst. 51, 201 (2000).

    Article  CAS  Google Scholar 

  10. P. K. Goel, S. O. Prasher, R. M. Patel, et al., Comp. Electr. Agric. 39, 67 (2003).

    Article  Google Scholar 

  11. J. Zupan and M. Novič, I. Ruisanchez, Chemom. Intell. Lab. Syst. 38, 1 (1997).

    Article  CAS  Google Scholar 

  12. P. Olmos, J. C. Diaz, J. M. Perez, et al., IEEE Trans. Nucl. Sci. 41, 637 (1994).

    Article  CAS  Google Scholar 

  13. P. Olmos, J. C. Diaz, J. M. Perez, et al., IEEE Trans. Nucl. Sci. 38, 971 (1991).

    Article  CAS  Google Scholar 

  14. S. Dragović, A. Onjia, S. Stanković, et al., Nucl. Instr. Meth. Phys. Res., Sect. A 540, 455 (2005).

    Article  Google Scholar 

  15. V. Pilato, F. Tola, J. M. Martinez, and M. Huver, Nucl. Instr. Meth. Phys. Res., Sect. A 422, 423 (1999).

    Article  CAS  Google Scholar 

  16. E. Yoshida, K. Shizuma, S. Endo, and T. Oka, Nucl. Instr. Meth. Phys. Res., Sect. A 484, 557 (2002).

    Article  CAS  Google Scholar 

  17. M. Kanevski, R. Arutyunyan, L. Bolshov, et al., Geoinform. 7, 5 (1996).

    Google Scholar 

  18. F. Despagne and D. L. Massart, Analyst 123, 157R (1998).

    Article  CAS  Google Scholar 

  19. QwikNet Version 2.23 (Craig Jensen, Redmond, USA, 1999).

  20. C. Di Natale, A. Macagnano, E. Martinelli, et al., Sens. Actuators, B 77, 561 (2001).

    Article  Google Scholar 

  21. K. Rajer-Kanduč, J. Zupan, and N. Majcen, Chemom. Intell. Lab. Syst. 65, 221 (2003).

    Article  Google Scholar 

  22. V. Vigneron, J. Morel, M. C. Lepy, and J. M. Martinez, Nucl. Instr. Meth. Phys. Res., Sect. A 369, 642 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dragović.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragović, S., Onjia, A. Artificial neural network data analysis for classification of soils based on their radionuclide content. Russ. J. Phys. Chem. 81, 1477–1481 (2007). https://doi.org/10.1134/S0036024407090257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024407090257

Keywords

Navigation